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§ Intuition: margins
§ Problem definition
§ Functional and geometric margins 
§ The optimal margin classifier
§ Regularization and the non-separable case



Intuition: margins
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The confidence of predictions

§ Recall in the logistic regression
§ Predict the probability 𝑝(𝑦 = 1|𝑥; 𝜃) using ℎ! 𝑥 = 𝑔(𝜃"𝑥)
§ Predict the label 𝑦 = 1 if ℎ! 𝑥 > 0.5
§ Predict the label 𝑦 = 0 otherwise

§ Consider different examples
§ For 𝑥 with 𝜃"𝑥 ≫ 0, being confident to predict 𝑦 = 1
§ For 𝑥 with 𝜃"𝑥 ≈ 0.0005, being NOT confident to predict 𝑦 = 1
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Illustration

§ Confidence of the prediction: A>B>C
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The confidence of predictions

§ We have a good model if the 𝜃 satisfies 
§ When 𝑦 = 1, 𝜃"𝑥 ≫ 0
§ When 𝑦 = 0, 𝜃"𝑥 ≪ 0

§ This reflects a very confident (and correct) set of classifications

§ Our objective: introduce the functional margins (confidence) to 
evaluate the performance
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New formulation of classification
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Formulation

§ To better evaluate the sigh of the label
§ Label 𝑦 ∈ {−1,1}

§ Linear classifier (based on parameter 𝑤, 𝑏)

§ 𝑏 plays the role of previous 𝜃#, 𝑤 plays the role of previous [𝜃$, 𝜃%, … , 𝜃&]
§ Activation function

§ 𝑔 𝑧 = 1 if 𝑧 ≥ 0
§ 𝑔 𝑧 = 0 otherwise

§ Difference from logistic regression: do not predict the probability
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Functional and geometric margins
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Functional margin

§ Define the functional margin w.r.t. training example 𝑖

§ Intuition: to make the margin larger
§ When 𝑦' = 1, hope 𝑤"𝑥' + 𝑏 to be a large positive number
§ When 𝑦' = −1, hope 𝑤"𝑥' + 𝑏 to be a large negative number
§ If A𝛾' > 0: prediction is correct

§ A large functional margin represents a confident and a correct prediction.
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Functional margin

§ Given the training set 𝑆 = { 𝑥!, 𝑦! , 𝑥", 𝑦" , … , 𝑥#, 𝑦# }
§ Define the functional margin w.r.t. training set

11



Limitation

§ If we replace 𝑤, 𝑏 with 2𝑤, 2𝑏
§ The prediction 𝑔(𝑤"𝑥' + 𝑏) does not change (since the sigh does not 

change
§ But the function margin changes

§ From this view, optimizing the functional margin changes 
anything meaningful
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Improvement: geometric margins
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𝑤!𝑥 + 𝑏 = 0



Improvement: geometric margins

§ How to compute the function margin?  
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𝑤!𝑥 + 𝑏 = 0



Geometric margins: formal definition

§ For any training example 𝑥$ , 𝑦$

§ If 𝑤 = 1, the function margin equals to geometric margin

§ Finally, given training set 𝑆 = { 𝑥!, 𝑦! , 𝑥", 𝑦" , … , 𝑥#, 𝑦# }
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The optimal margin classifier
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The optimization objective

§ Given a training set that is linearly separable
§ How to achieve the maximum geometric margin

§ Using optimization algorithm to solve it

§ But …
§ 𝑤 = 1 is a non-convex constraint, no standard optimization algorithm

17



Transforming the problem

§ New form

§ 𝑤 is a non-convex
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Keep going

§ Recall that scaling constraint on w and b without changing 
anything on prediction but influences the margin

§ We can scale w and b to ensure /𝛾 = 1

§ Then maximizing %&
'

equivalents to minimizing !
"
𝑤 "

§ New problem
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Quadradic convex 
objective

Linear constraint



§ The dual form and extension using kernel tricks are omitted
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Regularization and the non-separable case
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What happens if the data is non-separable

§
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Solution

§ To make the algorithm work for non-linearly separable datasets 
as well as be less sensitive to outliers
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Summary
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