

### MAT8034: Machine Learning

### **Support Vector Machines**

Fang Kong

https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Part of slide credit: Stanford CS229

## Outline

- Support vector machines
  - Intuition: margins
  - Problem definition
  - Functional and geometric margins
  - The optimal margin classifier
  - Regularization and the non-separable case

Intuition: margins

## The confidence of predictions

#### Recall in the logistic regression

- Predict the probability  $p(y = 1 | x; \theta)$  using  $h_{\theta}(x) = g(\theta^{\top} x)$
- Predict the label y = 1 if  $h_{\theta}(x) > 0.5$
- Predict the label y = 0 otherwise
- Consider different examples
  - For x with  $\theta^{T} x \gg 0$ , being confident to predict y = 1
  - For x with  $\theta^{\top}x \approx 0.0005$ , being NOT confident to predict y = 1



### Illustration



Confidence of the prediction: A>B>C

### The confidence of predictions

- We have a good model if the  $\theta$  satisfies
  - When y = 1,  $\theta^{\mathsf{T}} x \gg 0$
  - When y = 0,  $\theta^{\mathsf{T}} x \ll 0$
- This reflects a very confident (and correct) set of classifications

 Our objective: introduce the functional margins (confidence) to evaluate the performance

New formulation of classification

## Formulation

- To better evaluate the sigh of the label
  - Label  $y \in \{-1,1\}$
- Linear classifier (based on parameter w, b)

$$h_{w,b}(x) = g(w^T x + b)$$

- *b* plays the role of previous  $\theta_0$ , *w* plays the role of previous  $[\theta_1, \theta_2, ..., \theta_d]$
- Activation function
  - g(z) = 1 if  $z \ge 0$
  - g(z) = 0 otherwise

Difference from logistic regression: do not predict the probability

Functional and geometric margins

### **Functional margin**

Define the functional margin w.r.t. training example i

$$\hat{\gamma}^{(i)} = y^{(i)}(w^T x^{(i)} + b)$$

- Intuition: to make the margin larger
  - When  $y^i = 1$ , hope  $w^T x^i + b$  to be a large positive number
  - When  $y^i = -1$ , hope  $w^T x^i + b$  to be a large negative number
  - If  $\hat{\gamma}^i > 0$ : prediction is correct
  - A large functional margin represents a confident and a correct prediction.

### **Functional margin**

- Given the training set  $S = \{(x^1, y^1), (x^2, y^2), ..., (x^n, y^n)\}$
- Define the functional margin w.r.t. training set

$$\hat{\gamma} = \min_{i=1,\dots,n} \hat{\gamma}^{(i)}$$

### Limitation

- If we replace *w*, *b* with 2*w*, 2*b* 
  - The prediction  $g(w^{\top}x^{i} + b)$  does not change (since the sigh does not change
  - But the function margin changes  $\hat{\gamma}^{(i)} = y^{(i)}(w^T x^{(i)} + b)$
- From this view, optimizing the functional margin changes anything meaningful

#### Improvement: geometric margins



#### Improvement: geometric margins



How to compute the function margin?

2

$$w^{T}\left(x^{(i)} - \gamma^{(i)}\frac{w}{||w||}\right) + b = 0.$$

$$^{(i)} = \frac{w^{T}x^{(i)} + b}{||w||} = \left(\frac{w}{||w||}\right)^{T}x^{(i)} + \frac{1}{||w||}$$

b

### Geometric margins: formal definition

• For any training example  $(x^i, y^i)$ 

$$\gamma^{(i)} = y^{(i)} \left( \left( \frac{w}{||w||} \right)^T x^{(i)} + \frac{b}{||w||} \right)$$

• If ||w|| = 1, the function margin equals to geometric margin

• Finally, given training set  $S = \{(x^1, y^1), (x^2, y^2), ..., (x^n, y^n)\}$ 

$$\gamma = \min_{i=1,\dots,n} \gamma^{(i)}$$

The optimal margin classifier

### The optimization objective

- Given a training set that is linearly separable
- How to achieve the maximum geometric margin

$$\begin{aligned} \max_{\gamma,w,b} & \gamma \\ \text{s.t.} & y^{(i)}(w^T x^{(i)} + b) \geq \gamma, \quad i = 1, \dots, n \\ & ||w|| = 1. \end{aligned}$$

Using optimization algorithm to solve it

But ...

• ||w|| = 1 is a non-convex constraint, no standard optimization algorithm

### Transforming the problem

New form

$$\begin{array}{ll} \max_{\hat{\gamma},w,b} & \frac{\hat{\gamma}}{||w||} \\ \text{s.t.} & y^{(i)}(w^T x^{(i)} + b) \geq \hat{\gamma}, \quad i = 1, \dots, n \end{array}$$

• ||w|| is a non-convex

# Keep going

- Recall that scaling constraint on w and b without changing anything on prediction but influences the margin
- We can scale w and b to ensure  $\hat{\gamma} = 1$

- Then maximizing  $\frac{\hat{\gamma}}{\|w\|}$  equivalents to minimizing  $\frac{1}{2} \|w\|^2$
- New problem

$$\begin{array}{ll} \min_{w,b} & \displaystyle \frac{1}{2} ||w||^2 & \qquad & \mbox{Quadradic convex} \\ & \mbox{s.t.} & \displaystyle y^{(i)}(w^T x^{(i)} + b) \geq 1, \ i = 1, \ldots, n & \qquad \mbox{Linear constraint} \end{array}$$

#### The dual form and extension using kernel tricks are omitted

Regularization and the non-separable case

### What happens if the data is non-separable



### Solution

To make the algorithm work for non-linearly separable datasets as well as be less sensitive to outliers

$$\min_{\gamma,w,b} \quad \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i$$
  
s.t.  $y^{(i)}(w^T x^{(i)} + b) \ge 1 - \xi_i, \quad i = 1, \dots, n$   
 $\xi_i \ge 0, \quad i = 1, \dots, n.$ 

### Summary

- Support vector machines
  - Intuition: margins
  - Problem definition
  - Functional and geometric margins
  - The optimal margin classifier
  - Regularization and the non-separable case